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A Mollifier Useful for Approximations in Sobolev 
Spaces and Some Applications to Approximating 

Solutions of Differential Equations* 

By Stephen Hilbert 

Abstract. For a given uniform grid of EN (N-dimensional Euclidean space) with mesh h, 
a class of smoothing functions (mollifiers) is constructed. If a function is an element of the 
Sobolev space H', then the error made by replacing the given function by a smoother (CU) 
function (which is the given function convolved with one of the mollifiers) is bounded by 
a constant times hm. 

This result is used to construct approximations for functions using Hermite or spline 
interpolation, even though the function to be approximated need not satisfy the continuity 
conditions necessary for the existence of a Hermite or spline interpolate. These techniques 
are used to find approximations to the generalized solution of a second order elliptic 
Neumann problem. 

I. Introduction. One of the most useful applications of approximation theory 
is in approximating the solutions of differential equations. Many approximation 
schemes demand that the function which is being approximated satisfy certain con- 
tinuity conditions (e.g. Hermite and spline interpolation). Unfortunately, in many 
cases the solution to a given differential equation may not satisfy these conditions, 
or the theoretical solution is an element of Sobolev space and may not satisfy the 
necessary continuity conditions for such schemes. 

One procedure for dealing with this type of problem is to "smooth" the function 
by convolving the given function with a second function (called a mollifier). Then, 
one approximates the smoothed function which does possess the desired continuity 
properties. However, another source of error has been introduced, the error made 
by replacing the original function by the "smoothed" function. This leads to the 
problem of constructing mollifiers which have the property that the "smoothed" 
function is "close" to the original function. 

In this note, we shall demonstrate a method for constructing a class of mollifiers 
with the property that if a function u is in the Sobolev space H-2, then the error made 
by replacing u by u, convolved with one of the mollifiers, is mth order. This will enable 
us to construct approximants which are mth order accurate for functions in Hm by 
using interpolation techniques (even if the original function could not be interpolated). 

Using Hermite and spline interpolation techniques, we will construct two sub- 
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spaces of approximations which are mth order accurate for functions in Hm. Such 
subspaces are of crucial importance in the finite element method, Galerkin method 
and the least squares method of Bramble and Schatz (see [4], [7]). 

Finally, we use these subspaces to get error estimates for the approximate solution 
of a second order elliptic problem. 

II. Preliminaries and Conventions. Let R be a bounded domain in Euclidean 
N space, EN. We will assume R satisfies a restricted cone condition, that is, there is a 
finite open cover of AR, the boundary of R, { oi } and cones Ci with vertices at the 
origin such that for all x C Oi n R, x + Ci is contained in R. 

We shall consider complex valued functions defined on R. As usual, we denote 
by L2(R) the completion of the functions f defined on R such that fR If(x)j2 dx = 
RifIjIJ exists and is finite. a, 3, y, and T will denote multi-indices a = (a', *., aN) 

with i = ai and Da = (a/iaxi)ax * (a/iaxN)aN. For any nonnegative 
integer m, Hm(R) is the set of all distributions u such that the distributional deriva- 
tives Dau are in L2(R) for all ajI < m. The norm on Hm(R) is given by 
miUii, R = Z1al,m ||DaUIIR. 

We will also consider the space of functions which have continuous derivatives 
of order up to and including m in R. We denote this space by Cm(R). 

If a function u is infinitely differentiable in R and vanishes identically outside of 
some compact set contained in R, then we say u is in Co(R). 

Cornsider C'(EN) which we will always denote as simply CO. The completion of 
CO under the norm IIulI2 = fEN ju(x)j2 dx is L2. We define Ht for any positive integer 
m as the completion of C' under the norm ljull2 = J a Dlum iiDau 2 

Now let p be the diameter of the domain R. Let K be any subset of the set of 
multi-indices -y of length m (i.e., 1-y = m) which contains the indices -y with Yk = 

m, -y = O for j $ k and k = 1, * * *, N. The set of polynomials q such that DTq = 0 
for all T C K will be denoted by PK. The following is Theorem 2 of [3]. 

THEOREM 2.1. Let F be a linear functional on Hm(R) satisfying 
(a) IF(u)j ? CI- _I m p I-N/2 IDaUIIR where C is independent of p and u and 
(b) F(q) = O for q C PK. 
Then, there is a constant C1 independent of p and u such that jF(u)j < Cipm-1/2 

TEEK I IDru| JR. 
We will always assume that all functions are restricted to the domain R. Hence, 

we can regard PK as a subspace of Hm(R). 
In this paper, C will be used to denote a generic constant not necessarily the same 

in any two places. Also, all norms which appear in this paper are L2 or H2 norms. 

III. A Special Mollifier. If a function f satisfies certain continuity properties, 
then there are certain subspaces S such that an approximation to f, f , is in S. For 
example, to find an interpolate of f, f must usually be continuous. Now, if f does not 
have the necessary continuity properties, it still may be possible to find an approxima- 
tion of f in S. The method we will use to find the approximant is first to smooth f so 
that it does satisfy the continuity properties and then to approximate the smoothed 
function. If the difference between f and the smoothed function is of the same accuracy 
as the original approximation, then the method will give an accurate approximation 
to f in S, even when f is not continuous. We will now make these ideas precise. 
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We will need the Calderon extension theorem. Let R be a bounded domain satis- 
fying the restricted cone property. Then, there exists a bounded linear transformation 
P of Hm(R) into Hm such that for any u C Hm(R), Pu(x) = u(x) for all x in R. The 
proof may be found in Agmon [1, p. 171]. Hence, there is a constant C independent 
of u such that 1Pu||m _ C I|UIIm, R 

For two square integrable functions f and g, the convolution of f with g, denoted 
by f * g, is defined as 

f * g(x) = L f(x - y)g(y) dy = g * f(x). 
EN 

For a function 4 in CO, we can define a linear operator T on locally integrable func- 
tions f by Tf(x) = 4 * f(x). Since D(Tf) = Do * f, if 4 is infinitely differentiable, then 
Tf is. Hence, 4 is called a mollifier or smoothing function. In this chapter, we will 
construct a mollifier with the property Tf = f for f in certain classes of polynomials. 

Consider the function 4, in C'(E1) given by 

(,x) = p exp [-2 _ for x C (-e, e), 

= 0 if iXI > E, 

where I/p = TE' 4(x) dx. By a change of variable, it is easy to see that f 4, (x) dx = 1 
for any e > 0. Hence, 4, * c = c for any constant c. Consider (4, * x)(y) - y as a 
function of y. Since its derivative is zero, (4, * x)(y) - y is constant. Now, x is an 
odd function and 4, is an even function, thus, when y = 0, the constant vanishes. 
Thus, the operator associated with 4, reproduces polynomials of degree < 1. It 
follows that, for any real number r, the operator associated with r4, + (1 -r)012 

reproduces polynomials of degree ? 1. We denote r4, + (1 - r)),12 by 4)2. Con- 
sider (4) 72 * x2)(y) - y; this is a constant since its derivative is zero. Hence, if we 
choose r so that (4121 * x2)(0) = 0, the operator associated with )21 will reproduce 
polynomials of degree ? 2. By a change of variables, (4) /2 * X2m)(0) = 

2-2m(o) * x2m)(0). Hence, (12)1 * X2)(0) = (4, * x2)(0)[r + (1 - r)1/4], so r = -1/3. 
We denote 4) L1/3 as simply 4)7. Since 4)7) is even and x is odd, the operator 
associated with 4)(2) reproduces polynomials of degree ? 3. Letting )(3) = ro4(2) + 

(1-r)4(2 and following the above procedure, we can construct ? (3) and the operator 
associated with 4)(3) will reproduce polynomials of degree < 5. Hence, we can con- 
struct a function ?>(m) which is CO, and the operator associated with ?>(m) will reproduce 
polynomials of degree < 2m - 1. We remark that f 4)(n) (x) dx = 1 for any e > 0 
and any nonnegative integer. 

We shall define +(m)(x) as HN= (m)(x,), where x = (xl, , XN) and e = 

(E1, .. , EN). It is obvious (by Fubini's Theorem) that the operator associated with 
'm will reproduce polynomials of degree at most 2m - 1 in each variable. 

Next, let R, be hypercubes with sides of length h that satisfy EN = Ut Ri and 
Ri n Rj = 0 or an edge of Ri for i j j. For any x in EN, define Sh(x) as the set of 
all hypercubes Ri such that there is an element y in Ri satisfying Ixi -yl ? h for 
all j = 1, * , N. Note that there is an upper bound which is independent of x for 
the number of hypercubes in Sh(x). 

We will need the following Lemma. 
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LEMMA. Let u be an element of L2. Then,for any positive integer m, there are positive 
constants C and C1 which are both independent of u and h such that 

10>(m)y)I < Ch -N 
or any y in EN 

and 

h 
|?m) * U| |Sh(x) _ ChN2 I lU ICh(x) for any x in EA, 

where Ch (x) is simply the set of points z in EN such that z is in Sh(w) for some w in 
Sh(X). 

Proof. Let y; = hzi, then 4h(Y) = (1/h)41(zj). Since 4,h/2'(yi) = (2'/h)41(2'zi) 
and ?(Pm) is a linear combination of p h/2k for k = 0, 1, * , m - 1, we can express 
hm) as a combination of (1/h)4l evaluated at different points. Since 41 is bounded 

independently of h and y, the first inequality of the lemma is proved. 
The second inequality follows by expressing ?(4m) * u as an integral, interchanging 

the order of integration, using the first inequality and the fact that I4m) has support 
which is proportional to hN. 

We will now prove the main result of this section. 
THEOREM 3.1. Suppose u is a function which is in Hm. Then, there is a constant C 

independent of u and h such that 
N 

I I Da(4hk) * U - u)I I Chm lZl EID(m)uI| 
j=h 

for any index a with Jai ? m and k is greater than or equal to the greatest integer 
contained in 1(m + 1). D`m)u is the mth partial derivative of u in the jth coordinate 
direction. 

Proof. Let u be in Htm. Then choose x in EN and ,6 in CO. Define a functional by 

F(u, A,t', x) = fi [(4k) * U)(Y) U(Y)]g(y) dy. 
Sh ( x) 

It is easy to see that F is linear in u and that F(u, A, x) is defined for any u in L2. 
Also, by the construction of +p(k), we have F(p, A,, x) = 0 for any polynomial p of 
degree at most m - 1 in each variable. Using the Schwartz inequality, we can obtain 

IF(u, 4,, x)I < II4pk) * U - UIIsh(x) IhPIISh(.c) - Ch 'N12 lUll IhPIISh(x) 

where C is independent of u and h by our lemma. So by the theorem in Section 2, 
we have 

N 

I|F(U, ,6, x) I _ Ch MN2E |D (m)()lI Ch (X) ||41|]Sh(x)- 
1 =1 

Now integrate JF(u, ,6, x)j2 with respect to x over any hypercube Ri to obtain 

/ r ) 1/2 N 

\i IF(u, 4, x)12 dx < Chm I IID( "z)ulIci H14,Ic 
where C i is the set of all points y such that Sh(y) C, Ri $ 0. Since the L2 norm of 
any function f in Ri is the supremum of IfRi fPI for A' with norm 1 in L2(Ri) and C (Rj) 
is dense in L2(Ri), we obtain 
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I l+(k) * U - Ul[IR ? ChM| Z IDXmU IIci 
j=l1 

Summing over all possible indices i and, since each C is within a combination of a 
finite number of hypercubes Ri, we obtain the theorem in the case a = (0, *.. , 0). 
The theorem follows by considering h' a F(Dau, ,6, x) for all other multi-indices a 
with Ija ?< m. 

Now, if R is a bounded domain in EN, for u in Hm(R), Pu (the Calderon extension 
of u) is in Hm, so by the previous theorem 

N 
I I Da('kl * PU) - PUl l < Ch Z ||D1mPPull. 

ih- 

Now, since Pu(x) = u(x) for any x in R and C'(R) r, Hm(R) is dense in Hm(R). 
we have DaPu(x) = Dau(x) for all indices a such that I al < m and for any x in R, 
Thus, we have proved the following corollary. 

COROLLARY. Let u be in HI(R). Then there is a constant C independent of u and 
h such that 

N 
||Dca [(4k) * Pu) - u]IIR < Chi IaI E ||D(m)UIIR 

for any index a such that l al < m andfor any k larger than or equal to the greatest 
integer contained in 1(m + 1). 

IV. Applications to Approximation Theory. In this section, we will prove a 
general theorem on approximation, and then apply the theorem to the special cases 
of Hermite and spline interpolation. 

THEOREM 4.1. Let h be a positive parameter. Assume there is a subspace Sm,h(R) of 
Hm(R) such that, for any function u in C-(R) n Hm(R), there is an element v of Sm,h(R) 

satisfying IID(u - v)IIR -< Chm-lailulImR where C is independent of h and u and 

a is any index such that IajI < m. Then, for any u in Hm(R), there is a w in Sm,h(R) such 

that JIDa(u - w)IIR < Chm-II ujulIm,R for any index a such that IajI < m and C is 

independent of u and h. The result also holds for R = EN. 

Proof. Let u be in Hm(R), then by the theorem of Section 3, there is a function 
Uh = kh * Pu (for k > [In(m + 1)]) and IIDa(u - Uh)IIR ? Ch MaIIIUIm,R. 

Since olk) is in C', u, is in C'(R) n\ Hm(R), so by assumption, there exists an 
element w of Sm,h(R) such that I IDa(Uh-w)I |R Chm- I I aUh I m, R. Using the Schwartz 
inequality on the functions PU[0hk)]l/2 and [4o k)]1/2, one easily obtains 

I u(x) I ?(J [PU(y)]2[0k)(x - y)] dy 
EN/ 

By Fubini's theorem, we can now obtain IjUhlIR < ClIPull, where C is independent 
of h and u. Using the same technique on DaUh for all indices a such that |CaI < m 
we have I IuhlIIm,R < CIIPUIIm < ClIllulIm,R where the constants are independent of 
h and u. The proof is completed by using the triangle inequality on u - w = u - Uh + 
Uh - W. 

This theorem proves that any subspace of approximations of the continuous 
elements of a Sobolev space is in fact a subspace of approximations of every element 
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of the Sobolev space. Thus, interpolation techniques can be used even when there 
are discontinuous elements in the Sobolev space. 

Consider the case when u is in H2m(R). If u is in C2"- (R), then the mth Hermite 
interpolate of u, urn, exists and JID'(u -Urn)IIR _ Ch2m- la IEK IIDrUIIR, where 
K is a (proper) subset of the indices of length 2m. This was proved in [3]. 

Now, if u is in H2m(R), form uh - Opm) * Pu; since uh will be an element of C'(R) f\ 
H2m(R), the mth Hermite interpolate of uh, denoted Uh,m, exists. In fact, one can show, 
using the lemma of Section 3 and the techniques of [3], that 

(4.2) IID'(Uh - Uh, J)I IR < Ch2ma E |IDrul JR 
,rK 

for all indices a with I al < 2m and 0 < a ? m - 1. 
Now, define H(m) as the subspace of Cm-l(EN) such that u is in H(m) if and only 

if u is a polynomial of degree < 2m - 1 in each variable in each Ri and u is in 
Ctm-l(EN). H(rm(R) is the set of restrictions to R of the elements of H(m). 

THEOREM 4.3. Let u be in H2m(R). Then there is an element v of H(m)(R) such that 
I IDO(U -V) IIR Ch2m- 1 a IZ K I ID'ulR where C is independent of h and u for any 
index a with I ?l _ 2m andO ?< ai _ m - lfor i = 1, *I * , N. The result holds for 
R = EN. 

Proof. We note that the set K always contains indices -y of the form -yi = 2m, y = 
0 for i - j, i, j = 1,... , N. Hence, 

N 

E I|Drl UI |RD _ E| mD UIJ|R-. 
TEK j=l 

Thus, by Theorem 3.1 and (4.2), the theorem follows. 
We remark that we could have partitioned EN into rectangles instead of hyper- 

cubes. The same type of analysis would give local error bounds in terms of the longest 
side of the rectangle in each rectangle. Thus, if the ratio of the longest side to the 
shortest side of each rectangle is bounded above and below independently of the 
rectangle and if the longest side of each rectangle is bounded above independently 
of the rectangle, we would obtain error bounds with the upper bound of the longest 
sides replacing h. 

In [2], it was shown that if u is in Hk with k > N/2, then there is a spline inter- 
polant of order k for u, Sk(x, u) and IISk - Ul; < Chk-i IIUIIk for 0 ? j _ k. So 
we obtain the following results. 

THEOREM 4.4. Let u be in Hk. Then there exists a spline w of order k such that 
f lu - wII< Chki IIUIlkfor O _ j _ k with C independent of h and u. 

Proof. Form uh = * u, where s is the greatest integer contained in l(k + 1). 
Then, by Theorem 3.1, Iu-Uhlli <_ Chk-i IUIlk for O ? j _ k. So, by Theorem 4.1, 
we have just shown that S,(x, u,s) is a spline of order k such that |Sk(, Uh) - Uhli 

Chki |UIk for 0 < j < k. 
Hence, let w(x) = Sk(x, Uh) and the theorem follows. 
COROLLARY. Let u be in Hk(R). Let S be the set of restrictions to R of splines of 

order k. Then there is a v E S such that Ilu -VIi,R _ Chk-i IUIIk,Rfor O ? j < k 
with C independent of h and u. 

Proof. Let Pu be the Calderon extension of u. Hence, Pu is in Hk. By Theorem 
4.1, there is a spline of order k such that IPPuU- wI _ Chh3 IIPuIIk for 0 ? j _ k. 
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Thus, IIu - wji,R - |IPu - wll ? Ch |IPuII|k ? Ch" IIuIIk,,R by the continuity 
of the Calderon extension for 0 ? j _ k. Hence, w restricted to R is in S and the 
corollary follows with v taken to be the restriction of w to R. 

Thus, we have exhibited two examples of subspaces S&,,(R). Notice that the spaces 
were formed by interpolation techniques which demand continuity, but by using the 
mollifiers of Section 3, we could extend the results to all elements of the Sobolev space. 

V. A Problem with Natural Boundary Conditions. We will consider an oper- 
ator 

Lu(x) = -E d (ai(x) d u(x)) + c(x)u(x), 

where a, ,(x) and c(x) are real-valued functions with c(x) > k > 0 for all x E R, 

ai,(x) = a,i(x) for all x E R and EN,i=1 ajj(x)titj > ki 1k12 for any x E R and for 
any t an N vector of real numbers with I 

2 = 02 + + (N. We will assume that 
aii and c are in C1(A) where R is a bounded domain in EN. 

Consider the problem of finding a generalized solution of 

Lu(x) = f(x) for x in R, f E L&R), 

E ai,(x) dx, cos(v, xi) = 0 for x E dR, 

where v is the outer normal on MR. We define a bilinear form on H1(R) X H1(R) by 

a(u, v) = aii(x) x (x) x (x) + c(x)u(x)v(x)] dx. 

Now, by our assumptions, Ia(u, u)l > min (k, ki) IIUII2 R. 
By a generalized solution of (*), we mean a function u in H1(R) such that 

a(u, v) = L f(x)v(x) dx for all v in H1(R). 

Now, we will approximate u by a solution of a Rayleigh-Ritz-Galerkin problem. 
The Rayleigh-Ritz-Galerkin problem is to find a function 4 in S such that a(4, w) = 

fR f(x)w(x) dx for all w in S where S is a finite-dimensional subspace of H1(R). This 
problem has a unique solution q in S if and only if the problem ,1 E S, a(41, w) = 0 
for all w in S has =_ 0 as its unique solution. Since ,6 is in S, we have a(if., ) = 0, 
but this means 11WI11, R = 0. Hence, the Rayleigh-Ritz-Galerkin problem always has 
a unique solution 0 which is in the subspace S. 

Hence, a(u - 4, w) = 0 for all w E S. Thus, a(u - 4, 4-w) = 0 for all w E S 
since 0 is in S. Now, a(u, u) _ K2 Iull 12 where K2 = min(k, k,). Thus, by the Schwartz 
inequality, 

I(u - 4111,R IIu - W1,R _ C Ia(u-4, u -w)I = C Ia(u-4, u- 

> CK2 I IU - 112 

Hence, 

(5.1) IIu - 01111R _ CK2 inf IIu - W|1R. 
wes 
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Now, if the solution u is in H25(R), choose S as H"'(R) (the restriction to R of 
Ith order Hermite functions formed with respect to hypercubes of side length h). 
Thus, S C H1(R) for I any nonnegative integer. Thus, by Theorem 4.3 and (5.1), 
we obtain Ilu - P111,R < Ch2 ZTeK lID UI IR. 

If u is in Hk(R), let S be the restriction of kth order splines to R. Since R is a 
bounded domain, S is a finite-dimensional subspace of H1(R) for k any positive 
integer. Hence, by the corollary to Theorem 4.4 and (5.1), we obtain IIu -4111,R _ 
Chk-l IlUIIk. 

Making use of a method essentially due to J. Nitsche [6], we can find a bound for 
IIU - IIR by using bounds we have found for IIu -P111,R. 

If 4 is the solution to the Rayleigh-Ritz-Galerkin problem and u is the generalized 
solution of (*), we denote u - p as e. Hence, a(e, w) = 0 for all w in S. Let P be the 
projection operator from H1(R) onto S, then for any y in H1(R), w = Py = 

y - (I - P)y for some w E S where I is the identity operator on H1(R). 
Since a(e, w) = 0, we have a(e, y) = a(e, y - Py) for all y in H1(R). Now, e is in 
H'(R), so we can solve 

a(y, v) = f e(x)v(x) dx for all v in H'(R) 

and obtain y in H1(R). 
Hence 

IlelI = f e(x)e(x) dx = a(y, e) = a(y - Py, e). 

Using the Schwartz inequality on a ((I - P)y, e) we obtain 

llel12 ? C |(I _- P)YllI,Rlelll,R. 

Now, if the domain R is such that the solution u of a(u, v) = JR fv is in H2(R), 
then by choosing S to be one of the subspaces defined previously, we have 
11(I - P)YII1,R1 Ch 11YII2,R. If, in addition, the solution of a(u, v) = fR fv satisfies 
IlUI2 R _ C lifliR, we obtain 11( - P)YII1,R < Ch IleliR. Hence, under the above con- 
ditions, llellR ? Ch llell1,R 

Following Agmon [1, p. 128], we define an open set R to be of class Ck for k 1 if 
(1) for every x E aR there is an open neighborhood U such that, for 

some i, UC\ aR has the representation xi = g(x') for x' = (xi, * * *, Xi-1, Xi +1, * * *, XN) 

in U'where U'is the projection of U on the hyperplane xi = 0 and g is in Ck(U'); and if 
(2) U (\ R is contained in the half-cylinder { x I xi > g(x') for x' E U'} . 
Now, if R is bounded and of class C2, then the solution u of a(u, v) = JR fiv for 

all v in H1(R) is in H2(R) and l|Ull2 R < C IlfllR if f is in L2(R). This is proved by 
Lions [5, p. 111]. 

Let u be the solution of a(u, v) = JR fv3 for all v in H1(R) and let 4 in S be the 
solution of a(p, w) = JR fw for all w C S. Assume that R is of class C2. Then, using 
the splines of order 2 restricted to R as S, we have 

IIU - |JIi,R _ Ch | IU| 12,R for] 0, 1. 
If we use the Hermite subspace H(1)(R) as S, we have 

IIu - 
01II,R _ Ch2' E IIDu IIR for] = 0, 1, 

,EEK 

where K is the set of all indices r of length 2 such that x' is not its own first Hermite 
interpolate. 
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Furthermore, if u is in H'(R) using the splines of order I restricted to R as S, 
we obtain 

I Iu - 1 |j,R < Ch |' IIUII|,R for j = 0, 1. 

If u is in H2m(R), then using the Hermite subspace H(m)(R) as S, we obtain 

IIu - PIIj,,R _ Ch 2 E ' Z IID u|HR for] = 0, 1. 
,rK 

We can summarize the results of this section in the following theorem and 
corollary. 

THEOREM 5.1. If u, the solution of (*), is in the Sobolev space Hk(R), then there are 
subspaces Sk, (R) such that 

I|IU - 0111,R _ Chk1 IIUIIk,R, 

where C is a constant independent of h, and 4 is the solution to the Galerkin problem 
corresponding to (*), using Sk,h(R) as the subspace of H1(R). Furthermore, if the boundary 
of R is C2 and k is greater than or equal to 2, then 

IIU - 411i,R < Ch II UII k,R for i = 0, 1. 

COROLLARY. If f, the right-hand side of (*), is in L2(R) and If the boundary of R 
is C2, then using the splines of order 2 restricted to R as the Galerkin subspace, we have 

I IU - 011i,R - Ch2| 1|U 12,R for i = 0, 1. 

If we use the Hermite splines of order 1 restricted to R(H'1 (R)) as the Galerkin sub- 
space, we obtain 

IIu - | i, R -< Ch' E I I Du Iu R for = 0, 1. 
7-GK 

Both C and C1 are constants independent of h. 
Finally, we remark that the subspaces constructed in Section IV can be applied 

in the same manner to problems of elliptic operators of arbitrary order with natural 
boundary conditions. They may also be used to solve Dirichlet problems using the 
method of least squares due to Bramble and Schatz (see [4]). 
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